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Abstract
Rota–Baxter algebras were introduced to solve some analytic and combinatorial
problems and have appeared in many fields in mathematics and mathematical
physics. Rota–Baxter algebras provide a construction of pre-Lie algebras from
associative algebras. In this paper, we give all Rota–Baxter operators of weight
1 on complex associative algebras in dimension �3 and their corresponding
pre-Lie algebras.

PACS numbers: 02.20.Sv, 02.20.Uw
Mathematics Subject Classification: 17B, 81R

1. Introduction

A Rota–Baxter algebra is an associative algebra A over a field F with a linear operator
R : A → A satisfying the Rota–Baxter relation

R(x)R(y) + λR(xy) = R(R(x)y + xR(y)), ∀ x, y ∈ A. (1.1)

Here, λ ∈ F is a fixed element which is called the weight. Obviously that for any
λ �= 0, R → λ−1R can reduce the Rota–Baxter operator R of weight λ to be of weight
λ = 1.

Rota–Baxter relation (1.1) first occurred in the work of G Baxter in 1960 to solve an
analytic problem [Bax], based on a paper written by Spitzer [Sp] in 1956. In fact, the Rota–
Baxter relation (1.1) generalizes the integration-by-parts formula. Rota [R1–R4], Atkinson
[At] and Cartier [Ca] contributed important results. In particular, it was Rota who realized its
importance in combinatorics and other fields in mathematics [R1, R2]. Since then, it has been
related to many topics in mathematics and mathematical physics. For example, Rota–Baxter
algebras appeared in connection with the work of Connes and Kreimer on renormalization
theory in perturbative quantum field theory [CK2, CK3] (see [FG] for more details). It is also
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related to Loday’s dendriform algebras [Lo, LR], as well as to Aguiar’s associative analogue
of the classical Yang–Baxter equation [Ag1–Ag3].

However, it is difficult to construct examples of Rota–Baxter algebras. Basically, there
are two ways to construct Rota–Baxter algebras. One way is to use the free Rota–Baxter
algebras which in some sense are the ‘biggest’ examples. There are a lot of references on the
study of free Rota–Baxter algebras ([Ca, R1, EG2, GK1, GK2] and the references therein).
The other way is to get concrete examples in low dimensions, which is the main content of this
paper. Although there has already existed certain works on (finite-dimensional) Rota–Baxter
algebras, e.g. [Deb, Der, Mi1, Mi2, N], to our knowledge, there has been no ‘classification’
in low dimensions yet. We will give all Rota–Baxter algebras in dimension �3. Though our
study depends on direct computation through example one by one, these examples will be
regarded as a guide for further development.

An application of Rota–Baxter (associative) algebras is to get some new algebraic
structures. We mainly mention two classes of algebraic structures related to Rota–Baxter
algebras in this paper. One class of algebras are the Loday’s dendriform algebras [Lo, LR].
Dendriform algebras are equipped with an associative product which can be written as a linear
combination of nonassociative compositions. These notions are motivated by the natural link
between associative algebras and Lie algebras. By the work of Aguiar, Leroux and Ebrahimi-
Fard [Ag1, E1, E2, Le1, Le2] the close relation of these new types of algebras to Rota–Baxter
algebras as well as Nijenhuis algebras and differential algebras was established.

The other class of algebras are the pre-Lie algebras (or have other names such as
left-symmetric algebras, Vinberg algebras and so on). Pre-Lie algebras are a class of
nonassociative algebras coming from the study of convex homogeneous cones, affine manifolds
and deformations of associative algebras [Au, G, Ki, Me, V]. As it was pointed out in [CL], the
pre-Lie algebra ‘deserves more attention than it has been given’. It has also appeared in many
fields in mathematics and mathematical physics, such as complex and symplectic structures
on Lie groups and Lie algebras [AS, Ch, Sh], integrable systems [SS], classical and quantum
Yang–Baxter equations [Bo, ES, GS, Ku1, Ku2], Poisson brackets and infinite-dimensional
Lie algebras [BN, GD, Z], vertex algebras [BK], quantum field theory [CK1] and operads
[CL]. In particular, an important role has been played by pre-Lie algebras in mathematical
physics, especially the work of Connes-Kreimer on pre-Lie algebra structure on Feynman
diagrams by the insertion–elimination operations (see [CK4] for a detailed interpretation).
The same can be said of Rota–Baxter algebras. The connection of these two roles is still not
clear, which might be clarified by careful study on the relation between Rota–Baxter algebras
and pre-Lie algebras, as we try to do in this paper.

Since there is no suitable (matrix) representation theory of pre-Lie algebras due to their
nonassociativity, it is natural to consider how to construct them from some algebraic structures
which we have known. This is the ‘realization theory’. We have already obtained some
experience. For example, a commutative associative algebra (A, ·) and its derivation D
can define a Novikov algebra (A, ∗) (which is a pre-Lie algebra with commutative right
multiplication operators) by [GD, BM1, BM2],

x ∗ y = x · Dy, ∀ x, y ∈ A. (1.2)

An analogue of the above construction in the version of Lie algebras is related to the classical
Yang–Baxter equation. In fact, a Lie algebra (G, [, ]) and a linear map R : G → G satisfying

[R(x), R(y)] = R([R(x), y] + [x,R(y)]), ∀ x, y ∈ G (1.3)

can define a pre-Lie algebra (G, ∗) by ([BM3, GS, Ku3, Me])

x ∗ y = [R(x), y], ∀ x, y ∈ G. (1.4)
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Equation (1.3) is just the operator form of classical Yang–Baxter equation on a Lie algebra
which was given by Semenov-Tyan-Shanskii in [Se]. Obviously, it can also be regarded as
a Rota–Baxter operator of weight zero on the Lie algebra G. In fact, as it was mentioned in
[EGK, EG2], the Rota–Baxter relation (1.1) on associative algebras can be naturally extended
to be on Lie algebras.

It is natural to consider the construction of pre-Lie algebras from (noncommutative)
associative algebras. The answer is the construction from Rota–Baxter algebras. Let (A, ·)
be an associative algebra and R be a Rota–Baxter operator. If the weight λ = 0, then from
equations (1.3) and (1.4), it is obvious that the product

x ∗ y = R(x) · y − y · R(x), ∀ x, y ∈ A (1.5)

defines a pre-Lie algebra. When the weight λ = 1, we can see that the product

x ∗ y = R(x) · y − y · R(x) − x · y, ∀ x, y ∈ A (1.6)

defines a pre-Lie algebra (see corollary 2.7). In fact, there are two approaches to both
equations (1.5) and (1.6). One approach is from the relation between pre-Lie algebras and
the operator form of the (modified) classical Yang–Baxter equation given by Golubchik and
Sokolov in [GS]. The other approach is from the relation between dendriform dialgebras and
Rota–Baxter algebras and pre-Lie algebras given by Aguiar and Ebrahimi-Fard [Ag1, E1, E2].
It is also natural to consider which kind of pre-Lie algebras can be obtained from Rota–Baxter
algebras.

Note that for a commutative associative algebra, the inverse of an invertible derivation is
just a Rota–Baxter operator of weight zero. So we would like to point out that in the above
three algebraic constructions (commutative associative algebras, Lie algebras and associative
algebras) of pre-Lie algebras, the corresponding linear transformations (derivations, operators
satisfying classical Yang–Baxter equation and Rota–Baxter operators) have more or less
relations to Rota–Baxter operators.

We have given a detailed study of Rota–Baxter operators on pre-Lie algebras of weight
zero in [LHB]. A more remarkable property is that for any such Rota–Baxter pre-Lie algebra,
equation (1.5) can also define a pre-Lie algebra which is called the double of the former [LHB].
Therefore, any pre-Lie algebra with its Rota–Baxter operator (of weight zero) and its doubles
can construct a close category. We would like to point out that there is another different
double construction of Rota–Baxter algebras defined by Ebrahimi-Fard in [EGK], that is, for
any Rota–Baxter algebra (A,R), there is a new Rota–Baxter algebra (AR,R) which is called
the double of (A,R) in [EGK], where the product in AR is given by

x ∗R y = R(x)y + xR(y) − xy, ∀ a, b ∈ A. (1.7)

Moreover, all Rota–Baxter operators of weight zero on associative algebras in dimension �3
were given in [LHB] too.

In this paper, we study the Rota–Baxter operators of weight λ = 1 on associative algebras.
It is easy to see that this Rota–Baxter operator is still a Rota–Baxter operator on the induced
pre-Lie algebra given by equation (1.6) [EGP]. The paper is organized as follows. In section 2,
we give some fundamental results and examples on Rota–Baxter algebras and pre-Lie algebras.
In section 3, we give all Rota–Baxter algebras on two-dimensional complex pre-Lie algebras,
and in the associative cases, we give their corresponding pre-Lie algebras. In section 4, we
give all Rota–Baxter algebras on three-dimensional complex associative algebras and their
corresponding pre-Lie algebras. In section 5, we give some discussion and conclusions.

Throughout this paper, the Rota–Baxter operator is of weight λ = 1 and all algebras are
of finite dimension and over the complex field C, unless otherwise stated. 〈|〉 stands for an
associative algebra with a basis and nonzero products at each side of ‘|’.
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2. Preliminaries and some examples

Let A be an associative algebra. For any x, y ∈ A, the commutator [x, y] = xy −yx defines a
Lie algebra. We denote the set of all Rota–Baxter operators on A of weight λ = 1 by RB(A).
Then the following conclusion is obvious (cf [E1, EGP, EG1], etc).

Lemma 2.1. Let (A, ·) be an associative algebra.

(1) A linear operator R ∈ RB(A) if and only if 1 −R ∈ RB(A), where 1 is the identity map.
In particular, 0, 1 ∈ RB(A).

(2) Let (A, ∗) be an algebra given by

x ∗ y = R(x) · y + x · R(y) − x · y, ∀ x, y ∈ A. (2.1)

Then (A, ∗) is an associative algebra and R is still a Rota–Baxter operator of weight 1
on (A, ∗).

(3) If R ∈ RB(A), then B = 1 − 2R satisfies

[B(x), B(y)] + [x, y] = B([B(x), y] + [x, B(y)]), ∀ x, y ∈ A. (2.2)

(4) Let A′ denote the algebra defined by a product (x, y) → x ◦ y on A which satisfies
x◦y = y ·x for any x, y ∈ A, then A′ is still an associative algebra and RB(A) = RB(A′).

(5) If R ∈ RB(A) and R2 = R, then for any α ∈ F, Nα = (1+α)R−α satisfies the following
Nijenhuis relation [CGM, Le1, Le2]:

Nα(x)Nα(y) + N2
α(xy) = Nα(Nα(x)y + xNα(y)), ∀ x, y ∈ A. (2.3)

Remark 2.2. In [Se], equation (2.1) is called the operator form of the modified classical
Yang–Baxter equation on a Lie algebra.

In general, it is not easy to obtain RB(A) for an arbitrary associative algebra A. We give some
examples in certain special cases as follows.

Example 2.3. Let A be a commutative associative algebra which is the direct sum of fields.
That is, there is a basis {e1, . . . , en} of A satisfying eiej = δij ej . Then by Rota–Baxter relation
(1.1), R = ∑n

k=1 rikek ∈ RB(A) if and only if

rlkrkl = 0, ∀ l �= k,

and

rii = 0, ril = 0 or − 1, l �= i; or rii = 1, ril = 0 or 1, l �= i.

In particular, a special case was given in [E1] as (for any 1 � s � n)

R(ei) =
s∑

l=i

el, 1 � i � s; R(es+1) = 0, R(ei) = −
i−1∑

l=s+1

el, s + 2 � i � n,

that is,

rii = 1, rij = 1, rji = 0,

1 � i < j � s; rkk = 0, rkl = −1,

rlk = 0, s + 1 � l < k � n.

and rmn = 0 in the other cases. We also list RB(A) for n � 3 in the following two sections.

Example 2.4. Let A be an associative algebra in dimension n � 2 satisfying the condition
that for any two vectors x, y ∈ A, the product x · y is still in the subspace spanned by x, y.
From [Bai], for any fixed n � 2, there are three kinds of such (non-isomorphic) algebras. Let
{e1, . . . , en} be a basis of A, then A must be isomorphic to one of the following three algebras:
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(i) eiej = 0, ∀ i, j = 1, . . . , n;
(ii) e1ei = ei, ej ei = 0, ∀ i = 1, . . . , n, j = 2, . . . , n

(iii) eie1 = ei, eiej = 0, ∀ i = 1, . . . , n, j = 2, . . . , n .

It is obvious that RB(I) = gl(n) (all n × n matrices). Note that type (III) is just type (II)’
given in lemma 2.1. Hence RB(II) = RB(III).

Moreover, we can prove that any operator R ∈ RB(II) if and only if R2 = R. In fact,
let R(ei) = ∑n

k=1 rikek , then by the Rota–Baxter relation (1.1), we only need to check the
following equations (other equations hold naturally):

R(e1)R(ei) + R(ei) = R(e1R(ei) + R(e1)ei), ∀ i = 1, . . . , n.

For any i, the left-hand side is r11R(ei) + R(ei) and the right-hand side is R2(ei) + r11R(ei).
Therefore, R ∈ RB(II) if and only if R2 = R.

Furthermore, by conclusion (5) in lemma 2.1, we know that any Rota–Baxter operator R
on the pre-Lie algebra of type (II) or type (III) can induce an operator Nα = (1 + α)R − α

satisfying the Nijenhuis relation (2.3) for any α ∈ C.
On the other hand,

Definition 2.5. Let A be a vector space over a filed F with a bilinear product (x, y) → xy. A

is called a pre-Lie algebra if for any x, y, z ∈ A,

(xy)z − x(yz) = (yx)z − y(xz). (2.4)

It is obvious that all associative algebras are pre-Lie algebras. For a pre-Lie algebra A,
the commutator

[x, y] = xy − yx, (2.5)

defines a Lie algebra G = G(A), which is called the sub-adjacent Lie algebra of A.

Proposition 2.6 [GS]. Let (A, ·) be an associative algebra. If a linear operator R : A → A

satisfies the modified Yang–Baxter equation (2.2), then the new product * on A given by

x ∗ y = x · y + y · x + [R(x), y], ∀ x, y ∈ A (2.6)

defines a pre-Lie algebra.

By proposition 2.6 and the conclusion (3) in lemma 2.1, we can get the following
conclusion.

Corollary 2.7. Let A be an associative algebra and R be a Rota–Baxter operator of weight 1.
Then the product given by equation (1.6), that is,

x ∗ y = R(x) · y − y · R(x) − x · y, ∀ x, y ∈ A (2.7)

defines a pre-Lie algebra.

Definition 2.8 [Lo]. Let A be a vector space over a filed F with two bilinear products denoted
by ≺ and �. (A,≺,�) is called a dendriform dialgebra if for any x, y, z ∈ A,

(x ≺ y) ≺ z = x ≺ (y ∗ z),

(x � y) ≺ z = x � (y ≺ z), (2.8)

x � (y � z) = (x ∗ y) � z,

where x ∗ y = x ≺ y + x � y.

5
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Proposition 2.9 [Ag1, Lo]. Let (A,≺,�) be a dendriform dialgebra. Then the product given
by

x ∗ y = x ≺ y + x � y, ∀ x, y ∈ A, (2.9)

defines an associative algebra [Lo] and the product given by

x ◦ y = x � y − y ≺ x, ∀ x, y ∈ A, (2.10)

defines a pre-Lie algebra [Ag1]. (A, ∗) and (A, ◦) have the same sub-adjacent Lie algebra.

Therefore, corollary 2.7 (and equation (1.5) and conclusion (2) in lemma 2.1) can also be
obtained from the following conclusion (by a normalization of constant if necessary).

Proposition 2.10 [Ag1, E1]. Let (A, ·) be an associative algebra and R be a Rota–Baxter
operator of weight λ, then there is a dendriform dialgebra (A,≺,�) defined by

x ≺ y = x · R(y) − λx · y, x � y = R(x) · y, ∀ x, y ∈ A. (2.11)

It is obvious that for a commutative associative algebra (A, ·) and any R ∈ RB(A), the
pre-Lie algebra (A, ∗) given by equation (2.7) is still (A, ·) itself. It is also obvious that for
an associative algebra (A, ·), the pre-Lie algebra (A, ∗) given by equation (2.7) when R = 0
is just (A, ·) itself and when R = 1 is (A′, ◦) given in lemma 2.1. Moreover, we can get a
more general conclusion: let (A, ·) be an associative algebra and R ∈ RB(A). Let (A′, ◦) be
the associative algebra given in lemma 2.1. Then the pre-Lie algebra given by equation (2.7)
through (A,R) is just the one given by equation (2.7) through (A′, 1 − R).

Example 2.11. Let (A, ·) be the associative algebra of type (II) given in example 2.4. Then
the pre-Lie algebra (A, ∗) given by equation (2.7) satisfies

e1 ∗ e1 = −e1 −
n∑

k=2

r1kek,

e1 ∗ ej = (r11 − 1)ej , ej ∗ e1 = −
n∑

k=2

rjkek, ej ∗ el = rj1el,∀ j, l = 2, . . . , n,

where R(ei) = ∑n
k=1 rikek and R2 = R. It is interesting that for n = 2, 3, the above pre-

Lie algebras are associative (see the next two sections). However, it is not easy to get their
classification in higher dimensions and we have not known whether they are still associative.

Corollary 2.12 [EGP]. Let (A, ·) be an associative algebra and R ∈ RB(A), then R is still a
Rota–Baxter operator of weight λ = 1 on the pre-Lie algebra (A, ∗) given by equation (2.7).

Example 2.13. Let A be the two-dimensional associative algebra of type (II) in example 2.4,
then it is easy to see that the operator R given by R(e1) = e1, R(e2) = ae1 (for any a �= 0)
is a Rota–Baxter operator of A (also see the following section). The pre-Lie algebra obtained
by equation (2.7) is given by

e1 ∗ e1 = −e1, e1 ∗ e2 = e2 ∗ e1 = 0, e2 ∗ e2 = ae2.

It is a commutative associative algebra which is isomorphic to a simple form 〈e′
1, e

′
2|e′

1 ∗ e′
1 =

e′
1, e

′
2 ∗ e′

2 = e′
2〉 (it is just the algebra given in example 2.3 in the case n = 2) by a

linear transformation e′
1 → −e1, e

′
2 → 1

a
e2. Note that R is a Rota–Baxter operator of

(A, ∗) under the same basis {e1, e2} and the form R does not satisfy the conditions given in
example 2.3. In fact, under the new basis {e′

1, e
′
2}, R corresponds to the new form R′ given by

R′(e′
1) = e′

1, R
′(e′

2) = −e′
1 which is consistent with the conclusion in example 2.3. This is an

example that the matrix presentations of Rota–Baxter operators depend on the choice of the
bases. Moreover, there is a related discussion in section 5.
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3. Rota–Baxter operators on two-dimensional associative algebras and pre-Lie algebras

Let (A, ·) be an associative algebra or a pre-Lie algebra and {e1, e2, . . . , en} be a basis of A.
Let R be a Rota–Baxter operator of weight 1 on A. Set

R(ei) =
n∑

j=1

rij ej , ei · ej =
n∑

k=i

Ck
ij ek. (3.1)

Then rij satisfies the following equations:
n∑

k,l,m=1

(
Cm

kl rikrjl + Ck
ij rkm − Cl

kj rikrlm − Ck
ilrjlrkm

) = 0, ∀ i, j = 1, 2, . . . , n. (3.2)

We know that there are two one-dimensional associative algebras (D0) = 〈e1|e1e1 = 0〉
and (D1) = 〈e1|e1e1 = e1〉. It is easy to see that RB(D0) = C and RB(D1) = {R|R(e1) =
0orR(e1) = e1}.

We have known the classification of two-dimensional complex pre-Lie algebras [Bu],
which includes the classification of two-dimensional complex associative algebras. The
following results can be obtained by direct computation.

Proposition 3.1. The Rota–Baxter operators on two-dimensional commutative associative
algebras are given in the following table (any parameter belongs to the complex field C,
unless otherwise stated).

Associative algebra A Rota–Baxter operators RB (A)

(A1) e1e1 = e1, e2e2 = e2

(
0 0
0 0

)
,

(
1 0
0 1

)
,

(
0 0

−1 0

)
,

(
1 0
1 1

)
,(

1 0
0 0

)
,

(
0 0
0 1

)
,

(
0 0
1 1

)
,

(
1 0

−1 0

)
,(

1 1
0 0

)
,

(
0 −1
0 1

)
,

(
0 −1
0 0

)
,

(
1 1
0 1

)

(A2) e2e2 = e2, e1e2 = e2e1 = e1

(
0 0
0 0

)
,

(
1 0
0 1

)
,

(
1 0
0 0

)
,

(
0 0
0 1

)

(A3) e1e1 = e1

(
0 0
0 r22

)
,

(
1 0
0 r22

)

(A4) eiej = 0

(
r11 r12

r21 r22

)

(A5) e1e1 = e2

(
r11 r12

0
r2
11

2r11−1

)
, r11 �= 1

2

There are two non-commutative associative algebras in dimension 2 (B1) = 〈e1|e2e1 =
e1, e2e2 = e2〉 and (B2) = 〈e1|e1e2 = e1, e2e2 = e2〉. Both of them belong to the algebras
given in example 2.4 in the case n = 2, so any Rota–Baxter operator R satisfies R2 = R.
Furthermore, we can know that (since many of their corresponding pre-Lie algebras are
isomorphic under a basis transformation, we give a classification of these pre-Lie algebras ‘in
the sense of isomorphism’, that is, the corresponding pre-Lie algebras are isomorphic to some
pre-Lie algebras with simpler presentations)

7
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RB(B1) =
{(

0 0
0 0

)
�⇒ (B1)

⋃ (
1 0
0 1

)
�⇒ (B2)

⋃ (
1 0
r21 0

)
�⇒ (A2)

⋃ (
0 0
r21 1

)
�⇒ (A3)

⋃ (
r11 r12

r21 1 − r11

)
,
r12 �= 0
r2

11 − r11 + r12r21 = 0
�⇒ (A1)

}
.

We also have RB(B2) = RB(B1) and the corresponding pre-Lie algebras are given by the
conclusion before example 2.11.

Corollary 3.2. Any two-dimensional pre-Lie algebra obtained by equation (2.7) from a
Rota–Baxter (associative) algebra is associative.

Corollary 3.3. Only the non-nilpotent commutative associative algebras (they are (A1),
(A2), (A3)) can be obtained from two-dimensional non-commutative associative Rota–Baxter
algebras by equation (2.7).

At the end of this section, we give the following conclusion by direct computation.

Proposition 3.4. The Rota–Baxter operators on two-dimensional (nonassociative) pre-Lie
algebras are given in the following table.

Pre-Lie algebra A Rota–Baxter operators RB(A)

(B3) e2e1 = −e1, e2e2 = e1 − e2

(
0 0
0 0

)(
1 0
0 1

)

(B4) e2e1 = −e1, e2e2 = ke2, k �= −1 k �= 0 :

(
0 0
0 0

)(
1 0
0 1

)
(

0 0
0 1

)(
1 0
0 0

)

k = 0 :

(
1 0
0 r22

)(
0 0

r21 0

)
r21 �= 0(

0 0
0 r22

)(
1 0

r21 1

)
r21 �= 0

(B5) e1e2 = le1, e2e1 = (l − 1)e1, e2e2 = e1 + le2, l �= 0 l = 1 :

(
0 0
0 0

)(
1 0
0 1

)

l �= 1 :

(
0 0
0 0

)(
1 0
1

l−1 0

)
(

1 0
0 1

)(
0 0

− 1
l−1 1

)

(B6) e1e1 = 2e1, e1e2 = e2, e2e2 = e1

(
0 0
0 0

)(
1 0
0 1

)

Since (B6) is the unique simple pre-Lie algebra (without any ideals besides zero and
itself) in dimension 2 [Bu], we have

Corollary 3.5. There is no non-trivial Rota–Baxter operator on the two-dimensional simple
pre-Lie algebra, that is, only 0, 1 are the Rota–Baxter operators.

8
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4. Rota–Baxter operators on three-dimensional associative algebras and their
corresponding pre-Lie algebras

It is easy to get the classification of three-dimensional complex associative algebras (for
example, see [LHB]). Then by direct computation, we have the following results.

Proposition 4.1. The Rota–Baxter operators on three-dimensional commutative associative
algebras are given in the following table.

Associative algebra A Rota–Baxter operators RB(A)

(C1) eiej = 0

⎛
⎝r11 r12 r13

r21 r22 r23

r31 r32 r33

⎞
⎠

(C2) e3e3 = e1

⎛
⎜⎝

r11 0 0
r21 r22 0

r31 r32 r11 ±
√

r2
11 − r11

⎞
⎟⎠

(C3)

{
e2e2 = e1

e3e3 = e1

⎛
⎝r11 0 0

r21 r11 0
r31 0 r11

⎞
⎠ r11 = 0, 1

⎛
⎝r11 0 0

r21 r22 r23

r31 −r23 r22

⎞
⎠ ,

r23 �= 0,

r22 = r11 ±
√

r2
11 − r11 − r2

23

⎛
⎝r11 0 0

r21 r−
22 r23

r31 r23 r+
22

⎞
⎠

r23 �= 0,

r+
22 = r11 +

√
r2

11 − r11 − r2
23

r−
22 = r11 −

√
r2

11 − r11 − r2
23⎛

⎝r11 0 0
r21 r+

22 r23

r31 r23 r−
22

⎞
⎠

r23 �= 0,

r+
22 = r11 +

√
r2

11 − r11 − r2
23

r−
22 = r11 −

√
r2

11 − r11 − r2
23

(C4)

{
e2e3 = e3e2 = e1

e3e3 = e2

⎛
⎝

r22r33
r22+r33−1 0 0

r21 r22 0
r31 r32 r33

⎞
⎠ ,

r33 = r22 ±
√

r2
22 − r22

r21 = 2r32r33(1−r33)
(1−2r33)(r22+r33−1)

(C5)

⎧⎨
⎩

e1e1 = e1

e2e2 = e2

e3e3 = e3

⎛
⎝r11 0 0

0 r22 0
0 0 r33

⎞
⎠

⎛
⎝ r11 0 0

0 r22 0
2r33 − 1 2r33 − 1 r33

⎞
⎠

⎛
⎝ r11 0 0

0 r22 0
2r33 − 1 0 r33

⎞
⎠

⎛
⎝r11 0 0

0 r22 0
0 2r33 − 1 r33

⎞
⎠

⎛
⎝ r11 0 0

2r22 − 1 r22 0
0 0 r33

⎞
⎠

⎛
⎝ r11 0 0

2r22 − 1 r22 0
2r33 − 1 2r33 − 1 r33

⎞
⎠

⎛
⎝r11 2r11 − 1 0

0 r22 0
0 0 r33

⎞
⎠

⎛
⎝ r11 2r11 − 1 0

0 r22 0
2r33 − 1 2r33 − 1 r33

⎞
⎠

⎛
⎝r11 2r11 − 1 2r11 − 1

0 r22 0
0 0 r33

⎞
⎠

⎛
⎝r11 2r11 − 1 2r11 − 1

0 r22 0
0 2r33 − 1 r33

⎞
⎠

⎛
⎝ r11 0 0

2r22 − 1 r22 2r22 − 1
0 0 r33

⎞
⎠

⎛
⎝ r11 0 0

2r22 − 1 r22 2r22 − 1
2r33 − 1 0 r33

⎞
⎠

9
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Associative algebra A Rota–Baxter operators RB(A)⎛
⎝r11 0 0

0 r22 2r22 − 1
0 0 r33

⎞
⎠

⎛
⎝r11 2r11 − 1 2r11 − 1

0 r22 2r22 − 1
0 0 r33

⎞
⎠

⎛
⎝r11 0 2r11 − 1

0 r22 0
0 0 r33

⎞
⎠

⎛
⎝ r11 0 2r11 − 1

2r22 − 1 r22 2r22 − 1
0 0 r33

⎞
⎠

r11 = 0, 1, r22 = 0, 1, r33 = 0, 1

(C6)

{
e2e2 = e2

e3e3 = e3

⎛
⎝r11 0 0

0 r22 0
0 r32 0

⎞
⎠ , r22 = 0, 1, r32 = 0,−1

⎛
⎝r11 0 0

0 r22 0
0 r32 1

⎞
⎠ , r22 = 0, 1, r32 = 0, 1

⎛
⎝r11 0 0

0 r22 2r22 − 1
0 0 r33

⎞
⎠ , r22 = 0, 1, r33 = 0, 1

(C7)

⎧⎨
⎩

e1e3 = e3e1 = e1

e2e2 = e2

e3e3 = e3

⎛
⎝r11 0 0

0 r22 0
0 r32 0

⎞
⎠ , r11 = 0, 1, r22 = 0, 1, r32 = 0,−1

⎛
⎝r11 0 0

0 r22 0
0 r32 1

⎞
⎠ , r11 = 0, 1, r22 = 0, 1, r32 = 0, 1

⎛
⎝r11 0 0

0 0 −1
0 0 r33

⎞
⎠ r11 = 0, 1, r33 = 0, 1

⎛
⎝r11 0 0

0 1 1
0 0 r33

⎞
⎠ , r11 = 0, 1, r33 = 0, 1

(C8) e3e3 = e3

⎛
⎝r11 r12 0

r21 r22 0
0 0 r33

⎞
⎠ , r33 = 0, 1

(C9)

{
e1e3 = e3e1 = e1

e3e3 = e3

⎛
⎝r11 r12 0

0 r22 0
0 0 1 − r11

⎞
⎠ r12 �= 0, r11 = 0, 1

⎛
⎝r11 0 0

0 r22 0
0 0 r33

⎞
⎠ , r11 = 0, 1, r33 = 0, 1

⎛
⎝r11 0 0

r21 r22 0
0 0 r11

⎞
⎠ , r11 = 0, 1, r21 �= 0

(C10)

⎧⎨
⎩

e1e3 = e3e1 = e1

e2e3 = e3e2 = e2

e3e3 = e3

⎛
⎝r11 r12 0

r21 1 − r11 0
0 0 r33

⎞
⎠ ,

r12 �= 0
r33 = 0, 1
r11 − r2

11 − r12r21 = 0⎛
⎝r11 0 0

0 r11 0
0 0 r33

⎞
⎠ , r33 = 0, 1, r11 = 0, 1

⎛
⎝ 1 0 0

r21 0 0
0 0 r33

⎞
⎠ , r33 = 0, 1

10
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Associative algebra A Rota–Baxter operators RB(A)⎛
⎝ 0 0 0

r21 1 0
0 0 r33

⎞
⎠ , r33 = 0, 1

(C11)

{
e1e1 = e2

e3e3 = e3

⎛
⎜⎝r22 ±

√
r2

22 − r22 r12 0

0 r22 0
0 0 r33

⎞
⎟⎠ , r33 = 0, 1

(C12)

⎧⎪⎪⎨
⎪⎪⎩

e1e1 = e2

e1e3 = e3e1 = e1

e2e3 = e3e2 = e2

e3e3 = e3

⎛
⎝r11 0 0

0 r11 0
0 0 r33

⎞
⎠ , r33 = 0, 1, r11 = 0, 1

Proposition 4.2. The Rota–Baxter operators on three-dimensional non-commutative
associative algebras and their corresponding pre-Lie algebras given by equation (2.7) (in
the sense of isomorphism) are given in the following table.

Associative algebra A Rota–Baxter operators RB(A) Pre-Lie algebra

(T1)

{
e1 · e2 = 1

2 e3

e2 · e1 = − 1
2 e3

⎛
⎝r11 r12 r13

r21 1 − r11 r23

0 0 r33

⎞
⎠ , r2

11 − r11 + r12r21 = 0 (T1) (C3)

⎛
⎜⎝

r11 r12 r13

r21 r22 r23

0 0 r11r22−r12r21
r11+r22−1

⎞
⎟⎠ , r11 + r22 − 1 �= 0

(T1), (T2),

(T3)λ, λ �= 0

(T2) e2 · e1 = −e3

⎛
⎝0 0 r13

0 1 r23

0 0 r33

⎞
⎠ (C1)

⎛
⎝1 0 r13

0 0 r23

0 0 r33

⎞
⎠ (T1)

⎛
⎝r11 0 r13

0 r22 r23

0 0 r11r22
r11+r22−1

⎞
⎠ r11 + r22 − 1 �= 0 (T2), (T3)λ, λ �= 0

⎛
⎝ 0 0 r13

r21 1 r23

0 0 1

⎞
⎠ (r21 �= 0),

⎛
⎝0 r12 r13

0 1 r23

0 0 0

⎞
⎠ (r12 �= 0) (C2)

⎛
⎝ 1 0 r13

r21 0 r23

0 0 0

⎞
⎠ (r21 �= 0),

⎛
⎝1 r12 r13

0 0 r23

0 0 1

⎞
⎠ (r12 �= 0) (C3)

⎛
⎝0 r12 r13

0 r22 r23

0 0 0

⎞
⎠ r12 �= 0, r22 �= 1 (T2)

⎛
⎝1 r12 r13

0 r22 r23

0 0 1

⎞
⎠ r12 �= 0, r22 �= 0 (T2), (T3)λ, λ �= 0

⎛
⎝r11 0 r13

r21 0 r23

0 0 0

⎞
⎠ r11 �= 1, r21 �= 0 (T2), (T3)λ, λ �= 0

⎛
⎝r11 0 r13

r21 1 r23

0 0 1

⎞
⎠ r11 �= 0, r21 �= 0 (T2)

11
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Associative algebra A Rota–Baxter operators RB(A) Pre-Lie algebra

(T3)λ

⎧⎨
⎩

e1 · e1 = e3

e1 · e2 = e3

e2 · e2 = λe3

λ �= 0

⎛
⎝r11 r12 r13

r21 r22 r23

r31 r32 r33

⎞
⎠ (T3)λ, λ �= 0

r2
11 + r11(r12 − 2r33) +

(
λr2

12 + r33 − r12r33
) = 0;

r11r21 + r11r22 + λr12r22 + r33(1 − r11

−λr12 − r21 − r22) = 0;
r21r11 + r12r21 + λr22r12 − r21r33 − λr12r33 = 0;
r2

21 + r21(r22 − r33) +
(
λr2

22 + λr33 − 2λr22r33
) = 0

(T4)

{
e3 · e2 = e2

e3 · e3 = e3

⎛
⎝r11 r12 0

0 1 0
0 0 1

⎞
⎠ r12 �= 0 (T5)

⎛
⎝r11 r12 0

0 0 0
0 0 0

⎞
⎠ r12 �= 0 (N1)

⎧⎪⎪⎨
⎪⎪⎩

e1 ∗ e3 = e2

e3 ∗ e1 = e2

e3 ∗ e2 = e2

e3 ∗ e3 = e3⎛
⎝r11 0 0

0 0 0
0 0 0

⎞
⎠ (T4)

⎛
⎝ r11 0 0

r21 1 0
r21r32 r32 0

⎞
⎠ (C9)

⎛
⎝ r11 0 0

r21 0 0
−r21r32 r32 1

⎞
⎠ (C8)

⎛
⎝r11 0 0

0 1 0
0 0 1

⎞
⎠ (T5)

⎛
⎝r11 0 0

0 r22 r23

0 r32 1 − r22

⎞
⎠ ,

r23 �= 0
r2

22 − r22 + r23r32 = 0
(C6)

(T5)

{
e2 · e3 = e2

e3 · e3 = e3
RB(T4) The same as in (T4)

(=(T4)’)

(T6)

⎧⎨
⎩

e1 · e1 = e1

e3 · e2 = e2

e3 · e3 = e3

⎛
⎝r11 0 0

0 0 0
r31 0 0

⎞
⎠ , r11 = 0, 1, r31 = 0, −1 (T6)

⎛
⎝r11 0 0

0 1 0
r31 0 1

⎞
⎠ , r11 = 0, 1, r31 = 0, 1 (T7)

⎛
⎝r11 0 0

0 1 0
r31 r32 0

⎞
⎠ , r11 = 0, 1, r31 = 0, −1 (C7)

⎛
⎝r11 0 0

0 0 0
r31 r32 1

⎞
⎠ , r11 = 0, 1, r31 = 0, 1 (C6)

⎛
⎝r11 0 0

0 r22 r23

0 r32 1 − r22

⎞
⎠ ,

r23 �= 0
r11 = 0, 1
r2

22 − r22 + r23r32 = 0
(C5)
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Associative algebra A Rota–Baxter operators RB(A) Pre-Lie algebra⎛
⎝ r11 0 0

r23 r22 r23

−r22 r32 1 − r22

⎞
⎠ ,

r23 �= 0
r11 = 0, 1
r2

22 − r22 + r23r32 = 0
(C5)

⎛
⎝ r11 0 0

r23 r22 r23

1 − r22 r32 1 − r22

⎞
⎠ ,

r23 �= 0
r11 = 0, 1
r2

22 − r22 + r23r32 = 0
(C5)

⎛
⎝0 r12 −1

0 0 0
0 0 0

⎞
⎠ (N2)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e1 ∗ e1 = e1 + 2e3

e1 ∗ e3 = −e3

e3 ∗ e1 = −e3

e3 ∗ e2 = e2

e3e3 = e3

⎛
⎝1 r12 1

0 0 0
0 0 0

⎞
⎠ (N3)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e1 ∗ e1 = e1

e1 ∗ e3 = e3

e3 ∗ e1 = e3

e3 ∗ e2 = e2

e3e3 = e3⎛
⎝0 r12 −1

0 1 0
0 0 1

⎞
⎠ (T9)

⎛
⎝1 r12 1

0 1 0
0 0 1

⎞
⎠ (N4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e1 ∗ e1 = e1

e1 ∗ e2 = e2

e2 ∗ e1 = e2

e1 ∗ e3 = e3

e3 ∗ e1 = e3

e3 ∗ e2 = e2

e3e3 = −e3

⎛
⎝0 r12 −1

0 1 0
0 r12 0

⎞
⎠ (N5)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e1 ∗ e1 = e1

e1 ∗ e2 = e2

e2 ∗ e1 = e2

e3 ∗ e2 = e2

e3e3 = e3

⎛
⎝1 r12 1

0 1 0
0 −r12 0

⎞
⎠ (N6)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e1 ∗ e1 = e1

e1 ∗ e2 = e2

e2 ∗ e1 = e2

e3 ∗ e2 = e2

e3e3 = −e3⎛
⎝0 r12 −1

0 0 0
0 −r12 1

⎞
⎠ (T5)

⎛
⎝1 r12 1

0 0 0
0 r12 1

⎞
⎠ (N7)

⎧⎨
⎩

e1 ∗ e1 = e1

e3 ∗ e2 = e2

e3e3 = −e3

(T7)

⎧⎨
⎩

e1 · e1 = e1

e2 · e3 = e2

e3 · e3 = e3

RB(T6) The same as in (T6)

(=(T6)’)

(T8)

⎧⎪⎪⎨
⎪⎪⎩

e1 · e3 = e1

e3 · e1 = e1

e3 · e2 = e2

e3 · e3 = e3

⎛
⎝r11 0 0

0 0 0
0 0 0

⎞
⎠ , r11 = 0, 1 (T8)
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Associative algebra A Rota–Baxter operators RB(A) Pre-Lie algebra

⎛
⎝r11 0 0

0 1 0
0 0 1

⎞
⎠ , r11 = 0, 1 (N8)

⎧⎪⎪⎨
⎪⎪⎩

e1 ∗ e3 = e1

e3 ∗ e1 = e1

e2 ∗ e3 = e2

e3e3 = e3⎛
⎝r11 0 0

0 1 0
0 r32 0

⎞
⎠ , r11 = 0, 1 (C10)

⎛
⎝r11 0 0

0 0 0
0 r32 1

⎞
⎠ , r11 = 0, 1 (C9)

⎛
⎝r11 0 0

0 r22 r23

0 r32 1 − r22

⎞
⎠ ,

r23 �= 0
r11 = 0, 1
r2

22 − r22 + r23r32 = 0
(C7)

⎛
⎝ 0 0 0

r21 1 0
r21r32 r32 0

⎞
⎠ , r21 �= 0 (C10)

⎛
⎝ 1 0 0

r21 0 0
−r21r32 r32 1

⎞
⎠ , r21 �= 0 (C9)

⎛
⎝0 r12 0

0 1 0
0 0 1

⎞
⎠ r12 �= 0 (N9)

⎧⎪⎪⎨
⎪⎪⎩

e1 ∗ e3 = −e1 + e2

e2 ∗ e3 = −e2

e3 ∗ e1 = −e1 + e2

e3 ∗ e3 = −e3⎛
⎝1 r12 0

0 0 0
0 0 0

⎞
⎠ , r12 �= 0 (T8)

(T9)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e1 · e1 = e1

e1 · e2 = e2

e1 · e3 = e3

e2 · e1 = e2

e3 · e1 = e3

e3 · e2 = e2

e3 · e3 = e3

⎛
⎝0 0 0

0 0 0
0 0 0

⎞
⎠ ,

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ (T9)

⎛
⎝0 0 0

0 1 0
0 r32 0

⎞
⎠ (C7)

⎛
⎝ 1 0 0

0 0 0
r31 0 0

⎞
⎠ , r31 = 0, 1 (T9)

⎛
⎝ 1 0 0

0 1 0
r31 r32 0

⎞
⎠ , r31 = 0, 1 (C7)

⎛
⎝ 0 0 0

0 0 0
r31 r32 1

⎞
⎠ , r31 = 0, −1 (C7)

⎛
⎝1 0 0

0 0 0
0 r32 1

⎞
⎠ (C7)

⎛
⎝ 0 0 0

0 1 0
r31 0 1

⎞
⎠ , r31 = 0,−1 (T9)
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Associative algebra A Rota–Baxter operators RB(A) Pre-Lie algebra⎛
⎝r11 0 0

0 r22 r23

0 r32 1 − r22

⎞
⎠ ,

r23 �= 0
r11 = 0, 1
r2

22 − r22 + r23r32 = 0
(C5)

⎛
⎝ 0 0 0

−r23 r22 r23

r22 − 1 r32 1 − r22

⎞
⎠ ,

r23 �= 0
r2

22 − r22 + r23r32 = 0
(C5)

⎛
⎝ 1 0 0

−r23 r22 r23

r22 r32 1 − r22

⎞
⎠ ,

r23 �= 0
r2

22 − r22 + r23r32 = 0
(C5)

⎛
⎝r11 0 −1

0 r22 0
0 0 0

⎞
⎠ , r22 = 0, 1, r11 = 0, 1 (N5)

⎛
⎝r11 0 1

0 r22 0
0 0 1

⎞
⎠ , r22 = 0, 1, r11 = 0, 1 (T7)

⎛
⎝2 0 −1

0 r22 0
1 0 0

⎞
⎠ , r22 = 0, 1 (N5)

⎛
⎝−1 0 1

0 r22 0
−1 0 1

⎞
⎠ , r22 = 0, 1 (T7)

⎛
⎝r11 r12 −1

0 0 0
0 0 0

⎞
⎠ , r11 = 0, 1, r12 �= 0 (N5)

⎛
⎝r11 r12 −1

0 1 0
0 r12 0

⎞
⎠ , r11 = 0, 1, r12 �= 0 (N5)

⎛
⎝r11 r12 1

0 0 0
0 r12 1

⎞
⎠ , r11 = 0, 1, r12 �= 0 (T7)

⎛
⎝r11 r12 1

0 1 0
0 0 1

⎞
⎠ , r11 = 0, 1, r12 �= 0 (T7)

⎛
⎝2 r12 −1

0 0 0
1 0 0

⎞
⎠ , r12 �= 0 (N5)

⎛
⎝2 r12 −1

0 1 0
1 r12 0

⎞
⎠ , r12 �= 0 (N5)

⎛
⎝−1 r12 1

0 0 0
−1 r12 1

⎞
⎠ , r12 �= 0 (T7)

⎛
⎝−1 r12 1

0 1 0
−1 0 1

⎞
⎠ , r12 �= 0 (T7)

(T10)

⎧⎨
⎩

e3 · e1 = e1

e3 · e2 = e2

e3 · e3 = e3

{R|R2 = R} (T6), (T8), (T9),

(T10), (T11), (C10)

(T11)

⎧⎨
⎩

e1 · e3 = e1

e2 · e3 = e2

e3 · e3 = e3

{R|R2 = R} (T6), (T8), (T9),

(T10), (T11), (C10)
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Associative algebra A Rota–Baxter operators RB(A) Pre-Lie algebra

(T12)

⎧⎨
⎩

e3 · e1 = e1

e2 · e3 = e2

e3 · e3 = e3

⎛
⎝0 0 0

0 0 0
0 0 0

⎞
⎠ ,

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ (T12)

⎛
⎝ 1 0 0

0 0 0
r31 0 0

⎞
⎠ (N8)

⎛
⎝ 1 0 0

0 1 0
r31 r32 0

⎞
⎠ (C9)

⎛
⎝1 0 0

0 0 0
0 r32 1

⎞
⎠ (N8)

⎛
⎝0 0 0

0 1 0
0 r32 0

⎞
⎠ (T4)

⎛
⎝ 0 0 0

0 0 0
r31 r32 1

⎞
⎠ (C9)

⎛
⎝ 0 0 0

0 1 0
r31 0 1

⎞
⎠ (T4)

⎛
⎝ 0 0 0

r21 1 0
r21r32 r32 0

⎞
⎠ , r21 �= 0 (N1)

⎛
⎝ 1 0 0

r21 0 0
−r21r32 r32 1

⎞
⎠ , r21 �= 0 (N9)

⎛
⎝r11 0 0

0 r22 r23

0 r32 1 − r22

⎞
⎠ r23 �= 0

r11 = 0, 1
r2

22 − r22 + r23r32 = 0

(N10)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e1 ∗ e1 = e1

e1 ∗ e3 = e3

e3 ∗ e1 = e3

e3 ∗ e2 = e2

e3 ∗ e3 = −e3

(N6)⎛
⎜⎝

r11 0 0
r21 r22 r23

r21(1−r11−r22)
r23

r32 1 − r22

⎞
⎟⎠ ,

r23 �= 0
r21 �= 0
r11 = 0, 1
r2

22 − r22 + r23r32 = 0

(N6), (N10)

⎛
⎝r11 0 r13

0 r22 0
r31 0 1 − r11

⎞
⎠ ,

r13 �= 0
r22 = 0, 1
r2

11 − r11 + r13r31 = 0
(N6), (N10)

⎛
⎜⎝

r11 r12 r13

0 r22 0

r31
r12(1−r11−r22)

r13
1 − r11

⎞
⎟⎠ ,

r13 �= 0
r12 �= 0
r22 = 0, 1
r2

11 − r11 + r13r31 = 0

(N6), (N10)

⎛
⎝ 1 r12 0

0 0 0
r31 r31r12 0

⎞
⎠ , r12 �= 0 (N9)

⎛
⎝ 0 r12 0

0 1 0
r31 −r31r12 1

⎞
⎠ , r12 �= 0 (N1)
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Corollary 4.4. The algebras of type (N1)–(N10) are the only nonassociative pre-Lie algebras
obtained from three-dimensional Rota–Baxter algebras.

Corollary 4.5. The sub-adjacent Lie algebras of the nonassociative pre-Lie algebras obtained
from three-dimensional Rota–Baxter algebras are unique up to isomorphism:

〈e1, e2, e3|[e2, e3] = e2〉.
It is the direct sum of the two-dimensional non-Abelian Lie algebra and one-dimensional
center.

Corollary 4.6. Besides the algebras of type (C4), (C11) and (C12), the three-dimensional
commutative associative algebras can be obtained from noncommutative associative Rota–
Baxter algebras by equation (2.7).

5. Discussion and conclusions

From the study in the previous sections, we give the following discussion and conclusions:

(1) We have given all the Rota–Baxter operators of weight 1 on complex associative algebras
in dimension �3. They can help us to construct pre-Lie algebras. We would like to
point out that such constructions have some constraints. For example, all the pre-Lie
algebras obtained from two-dimensional Rota–Baxter algebras are associative and the
sub-adjacent Lie algebras of the nonassociative pre-Lie algebras obtained from three-
dimensional Rota–Baxter algebras are unique up to isomorphism.

(2) By conclusion (3) in lemma 2.1, the Rota–Baxter operators that we obtained in this
paper can help us to get the examples of operators satisfying (the operator form of)
the modified classical Yang–Baxter equation in the sub-adjacent Lie algebras of these
associative algebras.

(3) It is hard and less practicable to extend our study to be in higher dimensions since the Rota–
Baxter relation involves the nonlinear quadratic equations (3.2). Moreover, for a Rota–
Baxter algebra A , both the set RB(A) and the corresponding pre-Lie algebras obtained
from A rely on the choice of a basis of A and its corresponding structural constants (see
example 2.13). So it might be enough to search some interesting examples (not necessary
to get the whole set RB(A) ) in higher dimensions, even in infinite dimension [E1]. In
this sense, our study can be a good guide (like examples 2.3–2.4).

(4) The construction in corollary 2.7 cannot be extended to the nonassociative pre-Lie
algebras, that is, we cannot obtain pre-Lie algebras from a nonassociative Rota–Baxter pre-
Lie algebra by equation (2.7). However, if the induced pre-Lie algebra (A, ∗) = (A, ∗1)

from a Rota–Baxter (associative) algebra (A, ·, R) is still associative, then (A, ∗1, R) is
still a Rota–Baxter algebra which can induce a new pre-Lie algebra (A, ∗2) with R being
a Rota–Baxter operator (it is also a double construction, see [EGK, LHB]). Therefore,
we can get a series of Rota–Baxter (associative) algebras (A, ∗n, R) for any n ∈ N or
there exists some N ∈ N such that (A, ∗n, R) is a Rota–Baxter associative algebra for
any n < N and (A, ∗N,R) is a nonassociative Rota–Baxter pre-Lie algebra.

(5) We have also given the Rota–Baxter operators of weight 1 on two-dimensional complex
pre-Lie algebras. It is interesting to consider certain geometric structures related to these
examples and the possible application in physics.
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